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ABSTRACT
t'

The performance of an extended Kalman filter used to track a maneuvering surface
target using HFDF lines-of-bearing is substantially improved by implementing a fixed

interval smoothing algorithm and a maneuver detection method that uses a noise vari-

ance estimator process. This tracking routine is designed and implemented in a com-

puter program developed for this thesis. The Hall noise model is used to accurately

evaluate the performance of the tracking algorithm in a noisy environment. Several

tracking scenarios are simulated and analyzed. The application of the Kalman tracker

to a tropical storm tracking problem is investigated. Actual storm tracks obtained from

the Joint Typhoon Warning Center in Guam, Mariana Islands are used for this research.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not

have been exercised for all cases of interest. While every effort has been made, within

the time available, to ensure that the programs are free of computational and logic er-

rors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.
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1. INTRODUCTION

In 1986. then Deputy Chief of Naval Operations for Surface Warfare (OP-03), Vice

Admiral Joseph Metcalf III challenged the leadership of the U.S. Nay's Surface War-
fare community to reexamine the traditional concepts of surface warfare-concepts that

perhaps are preventing the Navy from taking full advantage of present and future tech-

nologies. Thus began Surface Warfare's Revolution at Sea. A vital concept to the

"Revolution at Sea" is the constantly expanding oceanic battle space ("up, out, and

down"). [Ref. 1]
With the advent of the mode-n long range cruise missile, U.S. surface forces have

the capability to attack enemy surface targets at 250 nautical miles. In order to make
full use of this capability however, an accurate and reliable method of over-the-horizon

tracking and targeting is necessry. The current methods used to target an enemy sur-

thce force at these ranges include the use of satellites, aircraft, and intelligence sources.

A major drawback to using these assets is the requirement that they transmit vital tar-

geting information to the ,attacking ship. A shipboard surveillance system that provides

this information locall" would allow the attacking forces to operate independently

without relying on other sources for targeting data, data that may or may not be avail-

able when needed for a number of reasons. In addition, the ability to operate cove:tly,

and to track and target enemy forces without divulging any targeting information,

greatly enhances the probability of success of a mission. This requires a passive acqui-

sition system. Surveillance of the high frequency spectrum using passive radio-direction

finding (RDF) sensors is one method of passive long range tracking. A shipboard high

frequency-direction finding system based on an extended Kalman filter with a fixed in-

terval smoothing algorithm can be used to accurately track and target a maneuvering

surface ship.

The major thrust of this thesis deals with the problem of tracking a surface ship at
long ranges using lines-of-bearing obtained from radio direction-finding sensors located

on two tracking ships. It is not the purpose of this research to address the multitude

of problems associated with the hardware aspects of a high frequency radio direction-

finding system. The basic assumption used here is that a shipboard direction-finding

sys;Z2m is in place that provides a line-of-bearing contaminated by an additive noise

process. The extended Kalman filter and the fixed interval smoothing algorithm will bc



used to refine the observed lines-of-bearing and improve the accuracy of the target track.

The noise added to the observed line-of-bearing is an integral part of the measurement

model and should reflect the noise process that would be encountered in the HF envi-
ronment as accurately as possible. For the simulations conducted, this measurement

noise was modeled using first a white noise model and then with a Hall noise model.

This thesis will be an extcnsion of a previous thesis done by Lieutenant Thomas K.

Bennett. The major points of that thesis are:

" 1 iie development of an extended Kalman filter shiptracking program.

" The observations used in the shiptracking program were RDF lines-of bearing.

" The position errors achieved by this program were 10-15 nautical miles.

This thesis wiU attempt to improve on the previous research by implementing a fixed

interval smoothing algorithm and a maneuver, divergence detection scheme that uses a
noise variance estimator process. The smoothing algorithm is an off-line calculaticn

that uses all measurements taken during a time interval 0<_,k < A to improve the esti-

mate. By having a more accurate assessment of what the target has done in the past,

we will be better able to predict ahead and estimate a target's future course, speed, and

position. The computational aspects of the smoothing algorithm will be investigated as

well as the types of estimation problems where the improvement due to the smoothed

calculations is significant and worth the extra computational effort. The two noise

models used in the simulations will be compared as to their accuracy and their advan-
tages or disadvantages of one or the other based on the computer simulations.

The tracking oi a tropical storm is a problem similar to the ship tracking problem

and is discussed in Chapter 5. The major difference between the filtering applications is

that the measurement data in the storm tracker are actual position coordinates given by

latitude and longitude values. This leads to a linear measurement process and therefore,

the linearization required in the ship tracking problem is unnecessary in the storm

tracking scenario.
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11. PROBLEM STATEMENT

A. GENERAL

The tracking scenario used in this thesis involves two tracking ships moving in the
general direction toward a target ship. The positions of the vessels are given in xv co-

ordinates. The target-tracker scenario is shown in Figure 1.

N

V V

2 V 2

vs 2

Figure 1. Surface Tracking Geonietry
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This problem will be developed using state space methods. Given the lines-of-

bearing (the measurements) received by a radio direction-finding system, we are inter-

ested in estimating the location, course, and speed of the target (the states of the plant).

The state variables for this plant are x, , ,, y,, and y,.

B. SYSTEM MODEL

The system to be modeled in this problem is that of a surface ship at sea. In the

development of this model, the following assumptions were made.

" The effect of wind, current, and hydrodynamic forces on the ship are neglected.

" The curvature of the earth is neglected; ocean surface area is flat.

* Course and speed inputs are constant (i.e., step inputs).

This is a linear, time-distance system that can be described with the equations of motion

for constant acceleration in two dimensions. The state space equation is

Xk+1 = Ok.bXk + rkak (2.1)

where

-c,= parameter to be estimated (state vector).

, state transition matrix which describes how the states of the dynamic system are
related

F,= system noise coefficient matrix

a,= random forcing function.

From Equation (2.1) and the above assumptions, the state vector is

ik (2.2)

and the system state equation can be expanded as

Y k+T - 0 + T ak (2.3)
00

4



The system noise process for the ship tracking problem is a function of the noise coeffi-

cient matrix, r,-, and the random forcing function, a,, which is simply the acceleration

vector.

C. MEASUREMENT MODEL

For a linear measurement process, the measurements are linearly related to the state
variables and can be modeled using the linear measurement equation

Zk = Hgk + A'k (2.4)

where

z,= set of measurements.

Hk = observation matrix that gives the noiseless relationship between the measure-
ments and the state vector.

,r= state vector

1,= measurement noise.

In this tracking problem, the measurements are the lines-of-bearing received by the

radio direction-finding sensors located on two surface ships. For the geometry of the
problem shown in Figure 1, the relationship of the measurements to the state variables

.s not linear and the measurement equation becomes

Znk = tan-1[ (X]k (2.5)

where

= observed lines of bearing at time k

x,.y= position of target at time k

X,,.Y , = position of sensor n at time k

v, = measurement noise.

This nonlinear equation must be linearized prior to processing the measurement data
with the filter and the smoothing algorithm. For this problem, an extended Kalman fil-

ter is required and will be discussed in the next chapter.

There are several types of noise that affect the propagation of radio signals, how-
ever, this noise can basically be divided into two categories, depending on whether it
originates from within the receiving system or external to the receiving antenna. For the
frequencies of interest in this problem (2-30 MHz), it is the atmospheric noise external

5



to the receiving system that is of the greatest concern. [Ref. 2: p. 41 This noise is a

function of many variables including the time of day, geographical location, season, and

frequency. Although this is generally a non-white, non-gaussian noise process, it can

be adequately described as a white noise process over an extended period of time. The

white noise model was used for the first set of computer simulations.

A deficiency of white noise as a model for atmospheric noise, is its inability to ac-
curately model the impulsive nature of the atmospheric noise associated with lightning

discharges. This impulsive noise characteristic was investigated by Hall [Ref. 31 and led

to the development of Hall's generalized "t model which has the form

x(t) = m(t)n(t) (2.6)

where ni(t) is a slowly varying stationary random process independent of n(I) and n(t) is

a zero mean, narrowband Gaussian process. The complete development of this model

can be found in Hall IRef. 3].

In [Ref. 4: pp. 13-35], Spaulding outlines a method of generating random noise

samples using the Hall model. The procedure for calculating these random samples

starts by generating random samples from a uniform distribution, V, in the interval from

zero to one and then modifying the sample according to the distribution required. For

the H-all model, the random noise samples are obtained using the equation
-2

Xn = i( P )T (2.7)

where 0 = 4 and y = 0.707. These values for E) and V were chosen using the atmospheric

noise curves in lRef. 3: p. 44]. The positive bias in the Hall model was subtracted out
prior to inserting the noise data into the ship tracking algorithm. This was done in order

to prevent a biased error covariance in the Kalman filter. The two noise models are
shown in Figures 2 and 3. Both noise processes are zero mean and ± 3 variance.

6
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Figure 2. White Noise Model
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Figure 3. Hall Noise Model
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III. KALMAN FILTER THEORY

A. GENERAL

Filtering refers to the process of estimating the state vector at the current time based

upon all past measurements. An optimal filter concentrates on optimizing a specific

performance measure used to approximate the quality of the estimate. The Kalman fil-
ter is the optimal filter in a class of linear filters that minimize the mean square esti-

mation error between the actual and desired output. In other words, the Kalman filter

attempts to minimize the elements along the main diagonal of the state error covariance

matrix. The filter itself is actually a recursive algorithm for processing discrcte meas-

urements or observations in an optimal manner. [Ref. 5: p. 1011 It requires a priori

knowledge of the state estimate (xkI and its error covariance (P,-,), and the current

observation (Z,). The Kalman filter is the proper algorithm to be used when both the

system model and the measurement model are linear functions of the state variables and

these models can be described by the equations

Xk+1 = ok-yk + Fkak (3.1)

Zk = H-Xk + k (3.2)

B. EXTENDED KALMAN FILTER

From equation (2.5), we can see that there is a nonlinear relationship between the
observed lines-of-bearing and the state variables. The adaptation of the Kalman filter

to a nonlinear application is the extended Kalman filter. The nonlinear measurement

equation is

z k = h(xk, k) + zk (3.3)

where the observation matrix (h,) is a function of the state at each sampling time and

the sampling index k. Linearization of this equation can be accomplished by expanding

h in a Taylor series about an estimated trajectory that is continually updated with the

filter's estimates. By keeping only the first term of the series expansion, a first order

approximation is obtained. Higher order, more precise filters can be constructed by in-

cluding more terms of the Taylor series expansion for the nonlinearities, and deriving



recursive relations for the higher moments of the state vector. A detailed discussion of
this procedure can be found in Gelb [Ref. 5: p. 100].

This linearization process yields the linear measurement equation

Zk= Hk~k + .k (3.4)

where

Hk= 6h(k, k) (35)

Applying this linearization method to equation (2.5), we get

6[ tan-'[ (Xtk - X )-- k) 1

Hk = Oak (3.6)

Simplifying equation (3.6)

Hk = [hll h 12  h13  h14 ] (3.7)

where

6 (v,k - Xnk)-y

(VIk Ynk) LV= k Ynk) (3.8)
, xtk  Rk

6[I tan-lI[ (xzk - x' k)(Pt -Y )

h12= Dt k  0 (3.9)

Y ( _ xx
ta- - k ( A nk) (3.10)h 3= Y~k Rk

tan-[ (xk - Xk) 1]
h14'trk -Ynk) 0

hia = 6j~dtk  =0(.1

9



By replacing y,, with Yk^,) in equation (3.8) and x,, with I ,,- in equation (3.10) the
linearized measurement matrix can be written as

H U[t(,klk- 1) - Y k)  0 (X*lk-1) - jck) 0 3.2
k2 0 - -^2 0 (3.12)

Rk Rk

where the range (R) is computed as

A 2 =_Ynk)2 + (3.13)kR _ 0(kik-1) + ('kjk-1) Xnk)(313)

Having linearized the measurement process about . kk-, where 4kk-1) denotes the state
estimate at time k based on all previous estimates computed at time k - 1, we can now

use the normal linear Kalman filter equations.

C. NOISE PROCESSES
The calculation of the error covariance matrix and the filter gain matrix requires the

covariance matrices for the uncorrelated noise process a, and rk. For the measurement

noise process v, the covariance matrix is

T[vkvTr] = Rk  (3.14)

where R, is defined as the state measurement noise covariance matrix. It is based on the
sensor accuracy and accounts for unknown disturbances such as steps, white noise, or

imperfections in the plant model. The variance of the white noise model and the Hall

noise model used in the computer simulations was ± 3 degrees.

The state excitation matrix, Q, used in the Kalman filter represents the system noise

process and is a function of the system noise coefficient matrix, F, and the random

forcing function, ak, where

Qk = [rkQ'kr r] (3.15)

where Q', is defined

=Eta' - ~akj . r Ea E[aayk 1 (3.16)LE~aykaxk] Eta 1 k)J

and r, is the same as in equation (2.3). The Q, matrix allows for any random target

maneuvers as well as inaccuracies in the system model. The magnitude of Q, has a direct

10



bearing on the magnitude of the state error covariance matrix and it prevents the
covariance matrix from becoming singular by ensuring some uncertainty in the state es-

timates.

From Figure 1, the velocity of the target is

v = v, sin 0, (3.17)

v= v, cos E, (3.18)

Differentiating equations (3.17) and (3.18) to get the target's acceleration

a= 4 V] + Vz 1+] (3.19)
V,

ay =I vy(3.20)

where

[ ]=sin E),

---COS of

Here ', and E), are equal to the acceleration along the target's course and the angular

velocity or turn rate, respectively. Assuming that

E[61] =E[v,)= 0

the variances become

E[0q] = (3.21)

2 2 (3.22)

Approximate values [Ref. 6: p. 391 for the standard deviations of the accelerations and

the angular velocity are

il1



degrees 
(3.23)aet=O. 1 sec (.3

0.01= ktsec (3.24)

and the variance values are

2 radians 2 (3.25)
O 0.01 09 6  7 )

o =0.0001 (3.26)
(mil

Taking the expectation of equations (3.19) and (3.20) and substituting in equations

(3.21) and (3.22) the elements of the Q' matrix are

2 [ x ]2 + 2

E[ak] = G'Vt e or (3.27)

la2 ] = U[ ' Y ]2 + 2 2 (3.28)

Llyk v 1 9V

L l t.k=aykx] xr V, + e (.).29)[( 2 )E~~~ak ~akY (4 2 _-~ (3.29)

D. INITIALIZATION AND OPERATION
In the ship tracking scenario, the extended Kalman filter and the fixed interval

smoothing algorithm are used to minimize the tracking errors. Prior to processing the

measurement data, the filter must be initialized with an initial state estimate and an ini-

tial error covariance matrix. This initialization process is a very important step in the
filter operation and gross inaccuracies in this step may cause the filter to diverge. Di-
vergence occurs when the calculated covariance errors become much smaller than the

actual covariance errors. This causes the actual values of the states to pull away from

the estimated values. The concept of divergence will be discussed in greater detail in

section E of this chapter. The initialization process is shown in Figure 4.

12



INITIAL
ESTIMATE

(Xt,Yt) t

VV t

SENSENSOR 2

(X2,Y2)

Figure 4. Initialization Process

The state estimates are the target's x and y position and the x and y components of

the velocity. The initial position estimate 11kef. 7: p. I I] is thle intersection of the first two

lines- of-bearing received by the filter and can be calculated as

x y~~tan(0 2) +Y~tan(0j) +x 2 -x 1Y a(1 1 (.0
= tan(01) -tan(0 2) - I tn01 + 1 (.0

-j, 2 tan(02 )+ Y1 tan(6,1) +x 2 - x, (3.31)
tan(O,) - tan(02)

The initial velocity estimate is taken to be zero since there is no velocity information

available to start the problem. The initial state estimates carry with thenm some error

13



and it is this error or rather an estimate of this error that is used to construct the initial

error covariance matrix. The initial position error is estimated to be 100 nautical miles

in the x and y position and the initial velocity estimate is taken to be 0.5 nautical miles

per minute or 30 knots. The errors are assumed to be zero mean and uncorrelated.

Given these error approximations, the initial error covariance matrix can be written as

10000 0 0 01
) 0 0.25 0 0 (3.32)

0 0 I0000 0

0 0 0 0.25]

The basic operation of the filter is a relatively straightforward recursive process.

The equations used in the extended Kalman filter are

ktk,) - ek~ k)(3. 3 3)

k(PItk-1) =kP(kk)¢k + Qk (3.34)

Gk = P(klk_)l 1(HkP(kIk_1)H-1+ Rk) -  (3.35)

X -(kik) - S(klk-1) + Gk(;k - Htk-kt)) (3.36)

P(k1k) = (I- GkHk)P(klk-1) (3.37)

where

= projected ahead state estimate

= state transition matrix given by eq. (2.3)

P_ 4- = projected ahead state error covariance matrix

Q, = state excitation covariance matrix given by eq. (3.15)

G, = Kalman gain matrix

R, = state measurement noise covariance matrix given by eq. (3.14)

Hk = linearized measurement matrix given by eq. (3.12).

Once the filter is initialized, we are ready to begin the data processing operation.

The a priori state estimate and the state error covariance matrix are calculated using the

0 matrix shown in equation (2.3) where T is the time difference in minutes between the

observed lines-of-bearing. (It is assumed that the lines-of-bearing are received simul-

14



taneouslv by both sensors.) Once the projected state estimate has been calculated, it is

used to calculate the linearized observation matrix in equation (3.12).

The Kalman gain matrix serves to minimize the mean square estimation error and

is an indication of how much emphasis or weight will be placed on the current observa-

tion. If P , ,, is small, the Kalman gain matrix will also be small due to the finite value

of R,. If the P(¢k_) is relatively large, the gain is approximately one. By rewriting the

equation for the calculation of the state estimate, equation (3.36) as

X{kjk) = (1 - Gkltk)41k.k-.1) + GkZk (3.38)

we can see how the Kalman gain matrix directly affects the weight placed on the current

observation .,. A large gain. indicating a large error covariance, will place more weight

on the current observation as the filter tries to correct the states. A small gain, indicat-

ing a small error covariance. places less emphasis on the new observation.

If the Kalman gain is expressed as

Gk = P(klk_.I[ R,, (3.39)

it can be seen that the gain matrix is "proportional" to the uncertainty in the estimate

P,,k-., and "inversely proportional" to the measurement noise R. [For a large R, and a

small P,, -,_ the measurement noise (y) in equation (3.4) is due mainly to noise and only

small corrections should be made in the state estimate. However, if R, is small and

P,_ -1)is large. the measurement noise contains considerable information about the errors

in the estimates and therefore a strong correction should be made to the state estimates.

[Ref. 5 :p. 127-S]

E. MANEUVER AND DIVERGENCE DETECTION

The extended Kalnan filter used in the tracking scenario is defined as an adaptive

or self-learning filter due to its ability to manipulate the process parameters (0,, H, R0,
and Qj) that change with time. If the model of the dynamic process under consideration

is inaccurate, the filtered estimates tend to walk off from, or diverge from, the true esti-

mates. As the filter locks on to the these inaccurate estimates, the state error covariance

matrix gets very small which in turn causes the filter gain to decrease. When the filter

gain decreases, less weight is placed on the current observations and the filter is unable

to make the corrections required to correct the state estimates. The divergence problem

can be detected by monitoring the filter residual process.

15



The residual process of the extended Kalman filter is defined as the difference be-

tween the observation at time t, and the output of the system model based on past inputs

up to time t, The residuals are a measure of how well the model fits the data. From

equation (3.36), the residual process is

k - H~kjk-1)  (3.40)

There are several techniques used to compensate for divergence. Bennett [Ref. 7:

p. 14-16], observes the three most recent residual values using a mcving average filter

and computing the standard deviation of the residual process. It is determined that the

target has maneuvered if the standard deviation exceeds a maneuver detection threshold

value. The window of the moving average filter is wide enough to absorb excessive

bearing errors that are far outside the standard deviation but narrow enough to detect

a target maneuver soon after it occurs. This detection threshold was chosen to achieve

a 90% probability of detecting a maneuver with a 10% false alarm rate.

The maneuver and divergence technique implemented in this thesis is an adaptive

noise estimation technique presented by Jazwinski [Ref. 8: pp. 311-3151, and utilized by

Olcovich [Re. 9: pp. 30-33]. This technique examines the residual of each observation

and compares the residual value to an adaptive gate where the adaptive gate is defined

as three times the predicted residual standard deviation. Defining the variance of the

residual [Rcf. 8: p.271) as

T
r(klk+1) = HkP(kikI)H + Rk (3.41)

The predicted residual standard deviation is

k r(kj*+J ) = N/ HkP(klk..)H[ + Rk (3.42)

and the adaptive gate becomes

GATE = 3 k  (3.43)

For each observation, the residual is compared to the adaptive gate. If the residual

value is less than the value of the adaptive gate, the filter continues on and processes the

next observation. If the residual value is greater than the adaptive gate, the divergence

detection and compensation algorithm begins.
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The state excitation matrix, Q,, is increased by increasing the elements along the
main diagonal of the Q', matrix given by equation (3.16). The old a priori value of the
error covariance matrix. P,,_1). given by equation (3.34), is increased by adding the new

state excitation matrix to it. A new filter gain, G,, and a new predicted residual variance,

r(,,- . are then calculated using equations (3.35) and (3.41) respectively. By increasing
Q, and adding it to P kk_), we prevent the state error covariance from becoming overly
optimistic while at the same time increasing the Kalman filter gain to appropriately
weigh the current observations. The larger predicted residual variance increases the
width of the adaptive gate and opens the filter window to a larger bearing deviation. If
this bearing deviation exceeds the adaptive window for three consecutive iterations using
the same observation, the filter determines that the target has maneuvered and the filter

parameters are reset.
In order to efficiently implement this maneuver/divergence detection process, the

value of Q, that is added to P,,-, must be carefully evaluated. If Q, is increased too
much. P ._ will grow without bound resulting in a highly unstable filter. This value of

Q should be sufticiently high in order to open the adaptive gate wide enough to account
for a random noisy bearing without indicating a target maneuver, and yet low enough
so that a maneuvering bearing will be outside the filter window and the maneuver will
be detected. A more sensitive filter, one with a narrow adaptive gate that would be ex-

ceeded ratler frequently by noisy bearings, will give a higher number of "false alarms"
or indications that the target has maneuvered when it actually has not. On the other
hand. a less sensitive filter will tend to "miss" a target maneuver more often, due to the
lareer window of the adaptive gate. However, it will also provide fewer erroneous target
maneuver indications. The idea is to design the adaptive gate parameters in order to
optimize the number of actuil target maneuver detections, to minimize the number of

erroneous indications, and to prevent the filter from becoming unstable.
For the ship tracking scenario, the state excitation matrix Q, was increased by in-

creasing the coefficients along the main diagonal of the Q', matrix by a factor of 2.5.
These coefficients account for the random course and speed changes of the target. The
multiplicative constant of 2.5, found by trial and error, increases the width of the adap-
tive gate by three percent for each iteration.

The advantage of using this divergence algorithm over the moving average process
used in Ref. 7, is that a target maneuver can be detected with one observation as op-
posed to three observations required in the previous filtering algorithm. This advantage

also poses a serious defect in that the divergence'maneuver detection decision is based
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on only one residual and, therefore, has little statistical significance. This can be cor-

rected with the smoothing algorithm. [Ref 8 : p. 3131

F. SMOOTHING ALGORITHM

Smoothing is an off-line procedure that uses all the state estimates produced by an

estimator and attempts to improves the accuracy of these estimates by using more

measurements to produce the smoothed estimate. The estimator used in this thesis is the

extended Kalman filter described above. The basic idea behind smoothing is that for a

time interval from 0 to K, an estimate at time k based on all previous estimates up to

time K, (Xk ko), will be more accurate than an estimate based only on the estimates up to

time k, (.k,).

Meditch [Ref. 10: p. 193] categorizes smoothing algorithms into three particular

groups.

Fixed Point Smoothing smooths the estimate .(, at a fixed point k as K increases.

Fixed Lag Smoothing smooths the estimate -. for a fixed delay N as K increases.

Fixed Interval Smoothing smooths the estimate .K, ) over the time interval from 0 to
K where K is fixed and k varies from 0 to K.

This thesis uses a fixed-interval smoothing algorithm [Ref. 10: p. 216-224]. to

smooth the state estimates of the extended Kalman filter in the ship and storm tracking

scenarios. This smoothing routine provides the optimal state estimate at each time k

over a fixed interval from 0 to K. The smoothing algorithm is entered with the a priori

and a posteriori estimates and their associated covariance matrices. The equations used

in the smoothing algorithm are
-1 (3.44)-

Ak = P(kk) Pik+k) (3.44)

= j% JZ(klk) + Ak(4~+111,) - A(k + I1I k)) (3.45)

PQcIN)= P~klk)+ Ak(P rk+II,, - P0k+llk))A[ (3.46)

where

A, = smoothing filter gain matrix

= smoothed state estimate a time k based on N observations

P(,m = smoothed state error covariance matrix.
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At the start of the smoothing routine, the last filtered estimate becomes the first
smoothed estimate. The index k in equations (3.44-46) is decremented by one for each
pass through the smoother with the beginning value of k equal to the number of data
points to be smoothed, minus one ( N - I ). Consequently, the program makes N - I
passes through the smoothing algorithm.
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IV. COMPUTER SIMULATIONS

A. GENERAL

The SHIPTRACK extended Kalman filter program used in Ref. 7 was originally

implemented on an Apple Macintosh Plus microcomputer. This program was modified

and adapted to run on an IBM PC. A complete listing of the SHIPSM.FOR extended

Kalman filter and fixed interval smoothing algorithm is included in Appendix A. The

general scenario used in all of the computer simulation cases is that of two tracking ships

moving in the general direction of the target ship. The track data required by

SHIPSM.FOR for each scenario was generated using the program [Ref. 7]

TRACKDATA.FOR. This program calls for the initial course, speed, and position of

the two tracking ships and the target ship, the time of each HFDF interception, and any

course and speed changes of the target. (The course and speed of the tracking ships is

held constant throughout each simulation run.) The atmospheric noise is added to the

observed HFDF line-of-bearing in the TRACKDATA.FOR routine. It generates an

output file called TRKDATA.DAT that contains the time of each observation, the po-

sition of each tracking ship at each observation, and the angle of reception of each HF

intercept. This is the input file for the filter and smoothing algorithm. SHIPSM.FOR

generates four output files. FILDATA.DAT and SMDATA.DAT contain the track in-

formation and the files ELLIP.DAT and ELLIPS.DAT contain the data required to plot

the error ellipses for the filtered and the smoothed positions respectively. The error el-

lipses provide a graphical representation of the accuracy of the estimate.

The error ellipses generated [Ref 7: pp. 16-171 by the filter and smoothing algorithm

represent an area where the probability of the target's true position being within the el-

lipse is 68%. The erro. ellipses are plotted for every fourth position on the overall track

plot for each scenario (if the ellipses are plotted for every point the plots become too

cluttered to be interpreted accurately). A smoothed observation generates a smaller er-

ror ellipse than the filtered estimate. This is due to the smaller error variances for the

smoothed estimate compared to the error variances calculated for the filtered estimates

and reflect the higher degree of confidence placed in the accuracy of the smoothed esti-

mate. The last filtered estimate is equal to the first smoothed estimate and, therefore,

the smoothed and filtered error ellipse for this point overlap.
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Graphical results were obtained using the Matlab graphics package and the plots

included are representative of the results obtained from the different tracking scenarios.

The first graph is a geographical plot that compares the observed track, or the raw data,
with the filtered and smoothed track data and is used to demonstrate the effect of the

Kalman filter and the smoothing algorithm on the noisy data. The following two graphs

present the position errors and the variance in the x direction associated with the track

data. The last plot is included to give the reader an idea of how accurate the filtered and
the smoothed tracks are when compared to the target's true track.

The computer simulations consisted of nine targeting scenarios as listed below.

" Scenario #1--maneuver toward tracking ships, no measurement noise

" Scenario '2--no maneuver, white noise model

" Scenario #3--no maneuver. Hall noise model

* Scenario ±4--maneuver toward tracking ships, white noise model

" Scenario #5.-maneuver toward tracking ships, Hall noise model

" Scenario =6--maneuver away from tracking ships, white noise model

" Scenario #7--maneuver away from tracking ships, Hall noise model

" Scenario #8--2 maneuvers away from tracking ships, white noise model

" Scenario 9--2 maneuvers away from tracking ships, Hall noise model

Scenarios one thru seven were started with the target ship at a position of (-75,150).
tracking ship 41 at a position of (-30,0), and tracking ship #2 at a position of (30,0).

For scenarios eight and nine, the target ship started at the origin and the tracking ships

were located at the above positions. The tracking ships were set on a course of 000* at

10 knots for each scenario. The speed of the target ship was held constant at 15 knots

throughout the simulations. The data was collected over a ten hour time frame with the

HF intercepts recorded at 30 minute intervals for a total of 21 intercepts for each simu-

lation. All times are given in minutes.
The percent improvement in the position error due to the Kalman filter and the

smoothing algorithm, is given for the different scenarios. This percentage was calculated

by taking the percent of improvement, (±), for each observation and then averaging

these percentages over the time interval of interest. These values give a relative indi-

cation of the effectiveness or ineffectiveness of the filter and the smoother for a partic-

ular scenario.
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B. SCENARIO #1

The first tracking scenario was used to verify that the Kalman filter and the

smoothing algorithm would accurately track a maneuvering target in a noiseless envi-

ronment. The results for this scenario are shown in Figures 5-8. In this case, the ob-

served track equals the true track due to the absence of noise in the bearing

measurements. The initial track error shown in Figure 6 is due to the error in the initial

state estimates. When the target maneuvers at 300 minutes, the tracking error increases

dramatically for the first observation after the turn, however, it returns to zero two ob-

servations later as the filter regains the target track.

The error ellipses in Figure 8 demonstrate graphically how the accuracy of the po-
sition estimates increases as the problem progresses. At time zero, the tracking ships

are approximately 150 nm southeast of the target. The large distance in the y direction

is reflected in the size and orientation of the major axis of the ellipse lying in a
southeasterly direction. As the tracking ships move north, the magnitude of the major

axis decreases and the direction of this axis rotates as the target ship passes in front of

the advancing tracking ships and eventually to the east of at a range of approximately

10 nm. At the end of the scenario, the tracking ships are located northeast of the target.
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Figure S. Scenario #1 Overall Track Results
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C. SCENARIO #2

In this case, the target is steaming due east at 15 knots for the entire simulation.

The results for this scenario are shown in Figures 9-12. The HFDF lines-of.bearing are
distorted using a white noise model to represent the atmospheric noise. The observed

track, calculated by taking the intercept of the unfilterd lines-of-bearing, is shown in

Figure 9. From this plot and the error plot of Figure 10, we can see how the extended

Kalman filter and the fixed interval smoothing improve the overall track estimate and

decrease the position error. The Kalman filter improves the position accuracy by an

average of 22% and the smoother improves the position accuracy by an average of 53%.
The filtered target speed is 19 knots and the smoothed target speed is 14.8 knots. The

increased confidence in the accuracy of the smoothed estimates is reflected in the plot

of the error variance in the x direction. Figure 12 shows the relationship of filtered arid

smoothed tracks to the true target track.
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D. SCENARIO #3

This scenario is the same as the previous one except that th: white noise model is

replaced by the Hall noise model. The results for this scenario are shown in Figures

13-16. The effects of the impulsive characteristics of this noise model are evident in the

early part of this simulation. A "wild" bearing, due to a noise spike, occurs at time 90

resulting in a large position error. This causes the next three filtered estimates to be very

inaccurate, however, the filter does begin to correct its track two observations after the

noise spike occurred. It is interesting to see that the smoother just about eliminates the

large tracking errors due to the erratic behavior of the Kalman filter. During the time

interval from 90 to 240 minutes, the average position error of the filtered estimates is

more than 850% worse than the observed position error while the average smoothed

position error is less than 130% of the observed error. Even with this improvement, the

position error is still greater than 20 nm and unacceptable for a long range missile at-

tack. As the simulation progresses and the ships move toward each other, the track

solution is refined and the track error remains inside of ten miles. The small noise spike

at 570 minutes is completely smoothed by the smoothing algorithm. The average target

speed estimated by the filter is 20.3 knots and the smoother refines that estimate to 17

knots.
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Figure 16. Scenario #3 Overall Track Results
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E. SCENARIO #4

In this simulation, the target makes a 60 course change toward the advancing

tracking ships five hours after the problem starts. The results for this scenario are shown

in Figures 17-20. The atmospheric noise model in this case is white noise. As in Sce-

nario 1, the initial error ellipses indicate the high degree of uncertainty in the position

estimates, especially in the y direction where the range between the target ship and the

tracking ships is the greatest. The average improvement in position error due to the

filter for the entire simulation run was 24% and that due to the smoother was 28.5%.

However, if we look at the first five hours of the problem, while the ships were still over

100 miles away from each other, the improvement due to the filter was 44.5% and the

smoother improved the position accuracy by over 62%. After the target maneuvered,

the vessels closed each other at a speed of 23 knots and the position error decreased

rapidly. The Kalman filter tracked the target at an average speed of 16.5 knots

throughout the problem and the smoothed speed estimate was 14.8 knots.
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Figure 20. Scenario 114 Overall Track Results

37



F. SCENARIO #5

The white noise model used in Scenario #4 is replaced by the Hall noise model for

Scenario #5. The results for this scenario are shown in Figures 21-24. In this case, three
noise spikes occur at observations one, three, and four as seen in Figure 21 and, there-

fore, the observed positions at these times are extremly inaccurate. The Kalman filter

improved the position accuracy by 33% over these four observations while the im-

provement due to smoothing the estimates was 59%. A fourth noise spike occurred 270
minutes into the problem and although this was not as large as the first three spikes

encountered, the filtered estimate is 46% better than the observed estimate and the

smoothed estimate is 78% better. Due to the relatively low amplitude of the Hall noise

model outside of the noise spikes, the filtered and smoothed position estimates show

only a minor improvement in time frame from six to nine hours. The small noise spike
at time 540 is pretty well smoothed out as seen in Figure 22. The average speed of the

target estimated by the filter is 21 knots and the speed estimated by the smoother is 16.4

knots.
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Figure 24, Scenario #5 Overall Track Results
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G. SCENARIO #6

This scenario depicts a 60* target maneuver to the northeast away from the two
tracking ships heading due north. The results for this scenario are shown in Figures

25-28. The white noise model is used in this simulation and because the relative distance

between the ships remains between 100 and 150 nm throughout the problem, the ob-

served position error remains on the order of 10-20 nm. This case demonstrates a gen-

eral improvement in the filtered and smoothed estimates over the entire track. The

position accuracy was increased by 25% with Kalman filter and by 45% using the fixed

interval smoothing routine. The smoother kept the track error at or below 8 nm for the

entire track interval with the exception of the first three observations to be smoothed
at times 600, 570, and 540. The average speed estimates for the filter and the smoother

were 17.1 knots and 16.6 knots respectively. Figure 28 shows the orientation of the

major axis lying in the north-south direction where the distance between the ships is the

largest. The magnitude of this axis is the largest at the beginning and the end of the

problem and at a minimum when the target maneuvers and ships are the closest to-

gether.
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Figure 28. Scenario #6 Overall Track Results
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H. SCENARIO #7

In this case. the Hall model was used to model the atmospheric noise. The results

for this scenario are shown in Figures 29-32. We can see three distinct noise spikes from
the error plot in Figure 30 at 120, 330, and 510 minutes. For each of these times, the
filtered estimate is better than the observed estimate and the smoothed estimate is the
most accurate of all. At other times, however, the filtered and smoothed estimate are

not the most accurate and in fact are sometimes (180, 360, & 450) much worse than the
observed error. The advantage to be gained by using the Kalman filter and the

smoothing routine in a case like this is the elimination of large, non-predictable errors

caused by the impulsive characteristics of atmospheric noise. The smoothed position

error remains between 2-11 nm throughout the problem while the filter position error
has a range of 2-28 nm and the observed position error varies from 3-38 nm. Figure 32

shows the overall accuracy of the smoothed track compared to the target's true track.
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1. SCENARIO #8
This simulation uses the white noise model and includes two target maneuvers dur-

ing the problem. The results for this scenario are shown in Figures 33-36. The target

begins this scenario 150 nm due north and directly between the tracking ships on the y
axis. The target's initial course is 0000 at 15 knots. At time 180 the target turns

northwest to a new course 310 ° . At time 390 the target turns again to a new course

040 ° . The tracking ships are heading due north at 10 knots. Due to the geometry of
this scenario, the tracking routine is relatively accurate in the x direction with most of

the position error in the y direction. The accuracy in the x direction is reflected in the
small variance error values shown in Figure 35. For the first five hours of the problem
the improvement in the position accuracy due to the filter and the smoother was about
the same (40%). During the second half of the problem, two large observation errors

are detected. In both instances the filter and the smoother improve on the position ac-

curacy, however, the because the observation error at 570 minutes is so large (140 nm),
the position errors for the filtered estimates and consequently the smoothed estimates

for the last two observations are also very large. The effect of these large bearing errors
is that the smoothed target track gives the impression that target has maneuvered and

turned north when it actually has not. This can be seen in Figure 36. The size of the

major axis of the error ellipses generated by the filtered and smoothed estimates also
increases when the estimated distance of the target from the tracking ships increases to

more than 220 nm by the end of the problem. The average target speed computed by

the Kalman filter is 32.3 knots and the smoothed speed is 23.5 knots.
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J. SCENARIO #9

Scenario =9 duplicates Scenario #8 with the Hall model used to approximate the
atmospheric noise. The results for this scenario are shown in Figures 37-40. Figure 38
shows a large position error due to a noise spike 60 minutes into the problem. The fil-

tered track for this scenario follows the target's true track, however, the position errors
vary from 4 to 28 nm over a ten hour tracking period. The smoother improves the po-

sition accuracy of the tracker in this problem by an average of more than 60%. The
smoothed track follows the target's real track for the entire track period with no major

deviations as shown in Figure 40. The average filtered speed is 25 knots and the aver-
aged smoothed speed is 16.5 knots.
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V. STORM TRACKING

A. GENERAL

The storm tracking scenario parallels the ship tracking problem in that both prob-

lems develop a position, course, and speed solution for a "target"' with similar system

dynamics. Where the observations for the ship tracking problem were RDF lines-of-

bearing that resulted in a nonlinear measurement equation (2.5), the observations for the

storm tracking scenario are actual position coordinates given by latitude and longitude

values. The storm tracks used in this thesis were obtained from data collected at the

Joint Typhoon Warning Center located in Guam and run by the U.S. Navy and the U.S.

Air Force. The position coordinates were obtained using aircraft, satellite, and radar

reconnaissance assets.

B. SYSTEM AND MEASUREMENT MODELS

The tropical storms were modeled as linear, time distance systems where the state

relationships are given by

I TO 00 x

k+1= 0 1 wk (5.1)

where wk is a random forcing function with a covariance matrix given by the state

excitation matrix. Qk. This is basically a fictitious noise source that prevents the error

covariance matrix from becoming singular. Qk is defined as

0.1 0 0 0
0.1 0 (5.2)

The measurement model utilizes the linear measurement equation given by equation

(2.6). Since the x and y position states are observed directly and given by the latitude

and longitude position coordinates, the measurement equation can be written as
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XI Jl 00001 ]
- 0 1 0 Y k (5.3)

where the measurement noise vk has a variance of ± 1 nm.

C. STORM TRACKS

Typhoon Pat developed east of Taiwan in the western Pacific on 24 August 1985.

The Typhoon Warning Period for this storm was from 27 August until I September.

Over this six-day period the storm traveled 1337 nm with maximum wind speeds of over

95 knots. This storm caused significant damage in southwestern and northeastern

Japan; primarily on the islands of Kyushu and Hokkaido. [Ref. 11: pp. 64-681

Figure 41 shows the actual track of Typhoon Pat using the observed positions.The

storm track shown in Figure 42 was constructed using the filtered and smoothed position

estimates obtained from the Kalman tracker. The observed storm positions are fairly

accurate and do not deviate from the overall track very much. Consequently, the filtered

and smoothed storm positions do not show a great deal of improvement overall. In the

areas of the track where the observed positions do vary, the smoother does improve the

track accuracy. Specifically, these areas occur near 22* N, 126 ° E, and 37° N, 1330 E.

Trhe second storm track analyzed was that of Typhoon Tess that originated south-

east of Guam on 30 August 19S5. The warning period for this storm lasted from I

September until 6 September. Tess traveled 1470 nm over its' seven-day lifespan on a

track that took it over the Philippines. north of Luzon, and across the South China Sea

moving inland 170 nm south of 1long Kong. Maximum wind speeds for this typhoon

were over 75 knots. [Ref. 11: pp. 76-77)
The performance of the smoother on the track of Typhoon Tess was similar to that

of Typhoon Pat. Figure 43 shows Tess's overall track and Figure 44 shows the track

results obtained with the Kalman filter and the smoothing algorithm. The Kalman

tracker and the smoother show some improvement in the track accuracy in the area of

150 N, 1230 E and 18.5' N, 1170 E.

The application of the Kalman filter tracker to the storm tracking problem would

be very useful in attempting to predict the storm's track when all the position data is not

available and the data that is available is not refined. Then, by using the filter and

smoothing routine, a more accurate track of the storm's past history can be calculated

allowing for a more accurate prediction of the storm's future track.
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VI. CONCLUSIONS

The purpose of this research was to improve the accuracy and maneuver detection

capability of an extended Kalman filter tracking routine by implementing a fixed interval

smoothing algorithm and a maneuver/divergence detection method that uses a noise
variance estimator process. The Hall atmospheric noise model was compared with a

white noise model in estimating the effects of atmospheric noise on the received HFDF
lines-of-bearing. Several different targeting scenarios were simulated and the accuracy

of the observed, the filtered, and the smoothed target tracks were analyzed and com-

pared.

The fixed interval smoothing algorithm improved the position accuracy of the target

in all the targeting scenarios simulated. Although the smoothed result was not always
the most accurate for every observation, the smoother did improve the track accuracy

by an average of 40-60 percent over the observed target positions and by an average of
20-30 percent over the filtered estimates. The effectiveness of the smoother increased

as the target range increased. The cost of this improvement was the increased computer

time required to run the smoothing routine and for the simulations conducted, this in-

crease was on the order of approximately 60% or 6-7 seconds when the program was run

on an IBM PS 2 Model 60 micro-computer.
The maneuver divergence detection scheme implemented worked well, however, be-

cause this process involves the addition of a time varying value of the state excitation

matrix. Q, to the a priori error covariance matrix, P(,,-,), there is a strong potential for

the filter to go unstable. This was observed when a very large noise impulse was en-

countered causing the observed line-of-bearing to change by more than 45' over one

observation. The major advantage gained in using this maneuver detection process is

that a maneuver is detected one observation after it occurs.

A white noise model is a relatively accurate model of the atmospheric noise over an

extended period of time, however, it fails to account for the impulsive nature of this

noise process. The Hall noise model corrects for this deficiency and was used in several
of the simulations. It was in the presence of these noise spikes that the operation of the

smoother was at its best. In virtually all of the simulations conducted, the smoothing

algorithm effectively eliminated the position errors due to a "wild" bearing caused by the

impulse noise. The improvement in the position estimate due to the smoother was
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commonly observed to be in the 75-85 percent range when a noise spike was encount-
ered.

There are several areas of this problem to be investigated further. The first area of
investigation involves the divergence detection algorithm. Although the process used in
this thesis was able to detect a maneuver using one observation and accurately track a
maneuvering target, there are many factors that must be modified to fit a particular
noise environment and tracking scenario. These factors make this detection scheme
undesirable if not impossible to implement in a real world, real time tracking problem.
Another area for further research is adaptation of this tracking algorithm to a multiple
target environment. This is an area where some work has been done and would be of
great value in a ship tracking targeting scenario. In this type of problem, the ability to
identify a high value target in a convoy or battlegroup is very important as well as the
ability to identify any background shipping that is not to be attacked. The trend toward
increased emphasis on passive tracking and targeting techniques will make this area of
research highly interesting and very useful in the future.
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APPENDIX A. SHIPSM.FOR

This is a listing of the SHIPSM.FOR program used to generate the data for the target

tracks presented in this thesis. In order to run this program, the TRKDATA.DAT file

must be available. This file is created by running the TRACK.FOR program located in

Appendix B.

C SHIPSM.FOR

C*********** TO RUN
C
C 1) RUN TRACK
C 2) RUN SHIPSM
C
C***** FOR GRAPHICAL OUTPUT *
C 3) COPY ELLIP, ELLIPS ,FILDATA ,& SMDATA -- > MATLAB SUB-DIR.
C 4) BEGIN MATLAB --> RUN SHIP
C
C
C THIS PROGRAM EMPLOYS AN ADAPTIVE EXTENDED KALMAN FILTER WITH A
C FIXED INTERVAL SMOOTHING ALGORITHM TO TRACK A MANEUVERING SURFACE SHIP
C TARGET USING BEARINGS-ONLY RADIO DIRECTION-FINDING MEASUREMENTS FROM
C SEVERAL SPATIALLY DISTRIBUTED SENSORS.
C .ee..n*****.A****.****************e*****************************

C ***VARIABLE DEFINITIONS***

C AK - SMOOTHING FILTER GAIN MATRIX
C AKT = TRANSPOSE OF AK
C BRG - MEASURED TARGET BEARING IN RADIANS
C BRKKMl = PREDICTED TARGET BEARING MEASUREMENT IN RADIANS
C BRG(KIK-1)
C DBRG = MEASURED TARGET BEARING IN DEGREES
C DT = TIME DELAY BETWEEN OBSERVATIONS,T(K) - T(Kl)
C DTOR = DEGREE TO RADIAN CONVERSION FACTOR
C E1,E2 = MEASUREMENT RESIDUAL, Z(K) - H(X(KIK-1))
C E1M1,E2M1 = MEASUREMENT RESIDUAL AT PREVIOUS OBSERVATION
C ElM2,E2M2 = MEASUREMENT RESIDUAL TWO OBSERVATIONS PREVIOUS
C FAC1 - RECIPROCAL OF VARE
C G = KALMAN GAIN VECTOR
C GATE = 3*PREDICTED RESIDUAL STANDARD DEVIATION
C H = MEASUREMENT MATRIX
C HDG = ESTIMATED TARGET READING IN DEGREES
C HT = TRANSPOSE OF H
C I = COUNTER
C IMAT - 4 X 4 IDENTITY MATRIX
C J - COUNTER
C K - ITERATION INTERVAL
C LPKK - STATE COVARIANCE MATRIX AFTER PREVIOUS OBSERVATI
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C LPKKM1 = A PRIORI STATE COVARIANCE ESTIMATE
C LXKK = STATE ESTIMATE AFTER PREVIOUS OBSERVATIONS
C LXKK'II = A PRIORI STATE ESTIMATE
C PHI - DISCRETE-TIME STATE TRANSITION MATRIX
C PHIT = TRANSPOSE OF PHI
C PI - 3. 141592654
C PKK = ESTIMATION ERROR COVARIANCE MATRIX, P(KIK)
C PKKS = SMOOTHED ERROR COVARIANCE MATRIX
C PKKM1 = PREDICTED ESTIMATION ERROR COVARIANCE MATRIX, P(
C PKKMIS = PREDICTED ERROR COVARIANCE MATRIX FOR SMOOTHING,
C IPKKMIS = INVERSE OF PKKM1S
C PSS = ERROR COVARIANCE MATRIX FOR SMOOTHING, P(KIK)
C Q = STATE EXCITATION MATRIX
C R = MEASUREMENT NOISE COVARIANCE
C RANGE = DISTANCE FROM SENSOR TO A PRIORI TARGET POSITION
C RTOD = RADIAN TO DEGREE CONVERSION FACTOR
C SPD = ESTIMATED TARGET SPEED IN KNOTS
C TEMP = TEMPORARY STORAGE MATRICES USED IN MATRIX
C OPERATIONS
C VARE VARIANCE OF RESIDUALS PROCESS
C XDIFF = DISTANCE IN X DIRECTION FROM SENSOR TO A PRIORI
C TARGET POSITION
C XKK = ESTIMATED TARGET STATE VECTOR, X(KIK)
C XKKS = SMOOTHED TARGET STATE VECTOR
C XKKN1 = PREDICTED TARGET STATE VECTOR, X(KIK-1)
C XKKM1S = PREDICTED TARGET STATE VECTOR FOR SMMOTHING, X(K
C XPOS = ESTIMATED TARGET POSITION IN X DIRECTION
C XS = SENSOR POSITION IN X DIRECTION
C XSS = TARGET STATE VECTOR FOR SMOOTHING, X(KIK)
C XT = TRUE TARGET POSITION IN X DIRECTION
C YDIFF = DISTANCE IN Y DIRECTION FROM SENSOR TO A PRIORI
C TARGET POSITION
C YPOS = ESTIMATED TARGET POSITION IN Y DIRECTION
C YS = SENSOR POSITION IN Y DIRECTION
C YT = TRUE TARGET POSITION IN Y DIRECTION
C ZX = OBSERVED POSITION IN X DIRECTION
C ZY = OBSERVED POSITION IN Y DIRECTION

C VARIABLE DECLARATIONS
REAL'*4 XKK(4,1),XKKM1(4,1),LPKKM1(4,4),LXKI1I(4,1),PHI(4,4)
REAL*4 H( 1,4) ,G(4,i) ,TEMPI( 1,4) ,TEMP2( I,I) ,TEMP3(4, i)
REAL*4 TEMIP4(4,4),TEMP5(4,4),PKK(4,4),PKKM(4,4),HT(4,1)
REAL*4 LXKK(4,1),LPKK(4,4),XS(10),YS(10),DBRG(10),BRG(10)
REAL.*4 TEMP6(4,4),PHIT(4,4),IMAT(4,4),TEMP7(4,4),XT,YT
REAL*4 GATE(2),VARE(2),E(2),TEMP(4,1),XE(1000),YE(1000)
REAL*4 GATE 1, GATE2
REAL*4 DT,XDIFF,YDIFF,RANGE,XS1,YS1,BRG1,BRKKM1,Q(4,4)
REAL*4 OBSERR(50),FAC1,SIGTH2,SIGVT2,R,ETOTAL,EAVG,RTOD
REAL*4 X2,YS2,BRG2,ZX,ZY,M1,El,ElM,ElM2,DTOR,TRKERR(50)
REAL*4 M2,E2,E2Ml,E2M2,G11,G13,G21,G23,ZXM1,ZYM1,TEMP9(4,2)
REAL*4 XKKS(4,1,50),PKKS(4,4,50),SPD(50),SSPD(50),PMMS(4,4,50)
REAL-*4 XNNM1(4,1),XSS(4,1),XKKM1S(4,1),XMMS(4,1,50)
REAL*4 PNNM1(4,4),PSS(4,4),PKKMlS(4,4),IPKKMlS(4,4)
REAL'4 AK(4,4),AKT(4,4),II(4,4),STRKERR(50),DTS(50)
REAL*4 TEMPIS(4,4),TEMP2S(4,1),TEMP3S(4,1)
REAL*4 TEMP4S(4,4),TEMP5S(4,4),TEMP6S(4,4)
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REAL*4 XP(21),YP(21),XPS(21),YPS(21)

INTEGER*2 TIME,TIMEM1 ,NP,GTCTR

C OPEN OUTPUT DATA FILES
OPEN(UNIT=2,FILE' TRKDATA. DAT' ,STATUS=' OLD')
OPEN(UNIT=-3,FILE='OUTDATA. DAT' ,STATUS='NEW')
OPEN(UNIT=4,FILE='TRUDATA. DAT' ,STATUS='NEW')
OPEN(UNIT=-5,FILE='FILDATA. DAT' I STATUS='NEW')
OPEN(UNIT=6,FILE='SMDATA. DAT' ,STATUS='NEW')
OPEN(UNIT-7 ,FILE='ELLIP. DAT' 1STATUS='NEW')
OPEN(UNIT=8,FILE=',ELLIPS. DAT I ISTATUS='NEW' I
OPEN(UNIT=9,FILE=' RESULTS. DAT ,STATUS='NEW)
OPEN(UNIT-10,FILE='RESIDU. DAT' ,STATUS='NEW')

C RADIAN/DEGREE CONVERSION FACTORS
RT0D=57. 29577951
DTOR=0. 01745293

C COMPUTE 4X4 IDENTITY MATRIX
DO 5 I=1,4
DO 5 J=1,4
IF (I.EQ.J) THEN

IMAT(I,J)-1. 0
ELSE

IMAT( I,J)O. 0
END IF

5 CONTINUE

C INITIALIZE TIME COUNTER
TI EM1=0
NP= 1
GTCTR=O

C COMPUTE BEARING MEASUREMENT COVARIANCE
C BEARING ERROR STANDARD DEVIATION =3 DEGREES

R=( 3*DTOR )**'2

C READ IN OBSERVATION PACKET (TIME, # OF SENSORS)

C DT=TIlME(K)-TIME(K-1)

WRITE(*,*)'FILTERING TRACK DATA WITH KALMAN FILTER'
WRITE(*:*) '***===**

810 READ(2,1001,END=800)TIME,XT,YT,XS(l),YS(l),DBRG(l),
* XS(2),YS(2),DBRG(2)

1001 FORMAT(I4,8F9. 4)

DO 200 L--1,2
IF (DBRG(L). GT. 180.0) DBRG(L)=DBRG(L)-360

BRG( L)=DBRG( L)*DTOR
200 CONTINUE

IF (TIME.LT.O) GOTO 800
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DT=-TIME-TIMEM1

DTS(NP)=DT

CALL FINDPHI( PHI ,DT)

XS2=XS( 2)
YS2=YS( 2)
BRG1=BRG( 1)
BRG2=BRG( 2)

CALL MP(XS1,YS1,XS2,YS2,BRG1,BRG2,ZX,ZY)

IF(TIME. EQ. 0) THEN
CALL INIT(XS1,YS1,XS2,YS2,BRG1,BRG2,XKK,PKK)

C WRITE(3,*)'X(OI0,0):'
DO 601 I=1,4
LXKK(I,1)=XKK(I,1)

C WRITE(3,*)XKK(I,l)
601 CONTINUE

C WRITE(3,*)'P(010,O):'
DO 602 I=1,4
DO 602 J=1,4
LPKK( I,J)=PKK( I,J)

C WRITE(3,401)PKK(I,J)
401 FORMAT(4F14. 4)
602 CONTINUE

ENDIF

C PROJECT AHEAD STATE AND ERROR COVARIANCE ESTIMATES
o X(K+11K) = PHI *X(KIK)

CALL MATMUL(PHI,XKK,4,4,1,XKKM1)

C WRITE(3,*)'X(',TIMIE,'I',TIMEM1,',O):'
DO 603 I=1,4

C WRITE(3,*)XKKM1(I,1)
LXKKM1 (1,1) XKM1 I( I ,1)

603 CONTINUE

C P(K+1IK) =(PHI * P(KIK) * PHIT) + Q

CALL MATRAN(PHI,PHIT,4,4)
CALL MATMUL(PHI,PKK,4,4,4,TEMP6)
CALL MATMUL(TEMP6,PHIT,4,4,4,TEMP4)
CALL GETQ(DT,XKKM1,Q,l)
CALL MATADD(TEMP4,Q,4,4,1,PKKM1)

* DO 408 I=1,4
DO 408 J=1,4

408 ONTNUELPKKM1( I,J)=PKKM1( I,J)
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WRITE(3,*)'PC',TIME,'I',TIMEMl,',0):'
DO 398 I=1,4
WRITE(3,*)(PKKM1(I,J) ,J=1,4)

398 CONTINUE
WRITE(3 ,*) 'Q( ',TIME,' I' ,TIMEM1,' ,O):'
DO 604 I=1,4
WRITE(3,*)(Q(I,J) ,J=1,4)

402 FORMAT(4Fl4.4)
604 CONTINUE

204 CONTINUE
DO 210 Li1,2

C CALCULATE RANGE TO TARGET
XDIFF=XKKM1( 1,1)-XS(L)
YDIFF-XKKM1( 3,1) -YS(L)
RANGE=SQRT( XDIFF**2+YDIFF**2)

C UPDATE H MATRIX WITH LATEST STATE ESTIMATES
H( 1, 1)=YDIFF/RANGE**2
H(1,2)O. 0
H( 1, 3)=-XDIFF/RANGE**2
H(1,4)O. 0

C WRITE(3,*)'H MATRIX:'
C WRITE(3,*)(H(1,I),1=1,4)

C COMPUTE OBSERVATION RESIDUAL
BRKKM1=ATAN2( XDIFF JYDIFF)
E( L)=BRG( L) -BRKKM1

C WRITE(3,*)'MEASURED BEARING = ',BRG(L)
C WRITE(3,*)'PREDICTED BEARING = ,BRKKM1
C WRITE(3,*)'BEARING RESIDUAL OF SENSOR ',L,' =',E(L)

C COMPUTE VARIANCE OF RESIDUALS SEQUENCE
C AND ADAPTIVE GATE VALUE
C VAR( E)=H*PKKM1*HT+R

CALL MATRAN(H,HT,1,4)
CALL MATMUL(H,PKKM1,1,4,4,TEMPl)
CALL MATMUL(TEMP1,HT,1,4,1,TEMP2)
VARE(L)-TEMP2( 1, 1)+R
WRITEC3,*)'VARIANCE OF RESIDUALS =',TIIIE,VARE(L)
GATECL)=3.O*SQRT(VARECL))

DO 399 I=1,4
WRITE(3,*)(PKKM1CI,J) ,J-1,4)

399 CONTINUE

C COMPUTE KALMAN GAIN MATRIX
C G=PKKM1*HT*( H*PKKM1*HT+R)**- 1

CALL MATRAN(H,HT,1,4)
CALL MATMUL(PKKM1,HT,4,4,1,TEMP3)

C WRITE(3,*~)'PKKM1*HT ='
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DO 414 I=1,4
C WRITE(3,*)TEMP3(I,l)
414 CONTINUE

FAC1=1/VARE( L)
CALL MATSCL(FAC1,TEMP3,4,1,G)

C WRITE(3,*)'G
DO 613 I=1,4
WRITE(3,*)G(I,1)

613 CONTINUE

IF (L.EQ. 1) THEN
G11=G( 1,1)
G13=G(3,1)

ELSE
G21=G(1,1)
G23=G(3,1)

END IF

C COMPUTE UPDATED ERROR COVARIANCE MATRIX
C P(KIK) = (I - G*H) * P(KIK-1)

CALL MATMUL(G,H,4,1,4,TEMP4)
C WRITE(3,*)'G*'H =

DO 419 I=1,4
C WRITE(3,418)(TEMP4(I,J),J=1,4)
418 FORMAT(4F14. 4)
419 CONTINUE

CALL MATSUB( IMAT,TEMP4 ,4,4 ,TEMP5)
* C WRITE(3,*)'I-G*H -

DO 413 I=1,4
C WRITE(3,415)(TEMP5(I,J),J=1,4)
415 FORMAT(4F14. 4)
413 CONTINUE

CALL MIATNJUL(TEMIP5 ,PKKM'1 ,4, 4,4, PKK)

C WRITE(3,*)'P(' ,TIME, I' ,TIM' E,' ,' ,L,'):'
DO 606 I=1,4

C WRITE(3,406)(PKK(I,J),J=1,4)
406 FORMAT(4F14. 4)
606 CONTINUE

C SAVE LATEST RESIDUALS & ADAPTIVE GATES
E1=E( 1)
E2=E(2)
GATE1=GATE( 1)
GATE2=GATE( 2)

WRITE( 1O,900)TIME,ABS(E1) ,ABS(E2) ,GATE1,GATE2
* 900 FORMAT(I4,4F10. 5)

C COMPARE BEARING ERRORS TO MANEUVER DETECTION GATES
IF (ABS(E(L)).GT.(GATE(L))) THEN

GTCTR=GTCTR+ 1
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WRITE(*,*)'** MANEUVER DETECTION GATE EXCEDED W
WRITE(*,*)'TIME' ,TIME

C WRITE(3,*)'** MANEUVER DETECTION GATE EXCEDED W
C WRITE(3,*)'TIME' ,TIME

CALL GETQ(DT,XKKM1,Q,O)
C CALL MATADD(PKKN1I,Q,4,4,1,PKKM1)

IF (GTCTR. EQ. 3) THEN
GTCTRO0
WRITE(* *-j'*** MANEUVEFR DETECTION ~
WRITE(*,*)'TIME' ,TIME

C WRITE(3,*)'*** MANEUVER DETECTION **

C WRITEC3,*)'TIME' ,TIME
CALL REINIT(DT,ZX,ZY,ZXM1,ZYM1,LPKKM1,XKKM1,PKKM1)
CALL GETQ(DT,XKKM1,Q,1)

ELSE
GOTO 204

END IF
END IF
GTCTR=O

C COMPUTE UPDATED ESTIMATE
C X(KIK) = X(KIK-1) + G * E, WHERE E = Z(K) - H(K)*X(KIK-1)

XKK( 1, 1)=XKKN1( 1, 1)+(G( 1, 1)*E(L))
XKK(2, 1)=XKKM1(2, 1)+(G(2, 1)*E(L))
XKK(3,1)=XKKM1(3, 1)+(G(3,1)*E(L))
XKK(4, 1)=XKKM1(4, 1)+(G(4, 1)*E(L))

C WRITE(3,*) 'X(' ,TIME, 'I' ,TIME, ',',L, ')
DO 605 I=1,4

C WRITE(3,*)XKK(I,l)
605 CONTINUE

C IF MORE MEASUREMENTS,
IF (L.LT.2) THEN

C USE UPDATED STATE AND ERROR COVARIANCE ESTIMATES
C FOR NEXT MEASUREMENT

DO 150 I=1,4
DO 150 J=1,4

PKKM1( I,J)=PKK( I,J)
XKKM1(I, 1)=XKK(I, 1)

150 CONTINUE
ENDIF

210 CONTINUE

C THESE STATEMENTS ARE FOR THE SMOOTHING ALGORITHM

DO 620 I=1,4
XKKS(I,1,NP)=XKK(I,l)

620 CONTINUE

DO 630 I=1,4
DO 630 J=1,4

PKKS(I ,J,NP)=PKK(I ,J)
630 CONTINUE
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C COMPUTE TRUE TRACKING AND OBSERVATION ERRORS
TRKERR(NP)=SQRT( (XT-XKK(1,1) )**2+(YT-XKK(3, 1))**2)
OBSERR(NP)=SQRT( (XT-ZX)**2+(YT-ZY)**2)

C COMPUTE ERROR ELLIPSE DATA
CALL ELLIP(XKK(1,l),XKK(3,1),PKK(l,l),PGK(3,3),PKK(1,3),XP,YP)
DO 640 IE=1,21

WRITE( 7,*)XP( IE) ,YP( IE)
640 CONTINUE

C COMPU TE ESTIMATED X-Y POSITION, COURSE, AND SPEED
XPOS=XKK(1, 1)
YPOS=XKK( 3, 1)
IF (XKK(2,1).EQ.0 .AND. XKK(4,1).EQ.O) THEN

HDG=0. 0
ELSE

HDG=RTOD*ATAN2(XKK(2, 1) ,XKK(4, I))
ENDIF
IF (HDG.LT.0.0) HDG=HDG+360
SPD(NP)=60*SQRT(XKK(2 ,1)**2+XKK(4, l)*2)

C WRITE(""t )'FILTERED DATA FOR DATA POINT' ,NP
'VRITE(3,*) 'FILTERED DATA FOR DATA POINT' NP

C WRITE(*,*)'TIME X POS Y POS HEADING SPEED'
WRITE(3,1")'TIME X POS Y POS HEADING SPEED'

C WRITE(-'-,10C2)TIME,XPOS,YPOS,HDG,SPD(I)
W RITE(3,1002)TIME,XPOS,YPOS,HDG,SPD(I)
WRITE(4, 1003)TIME,XT,YT
WR:TE(5,1O04)T-1ME,NP,XPOS,YPOS,ZX,ZY,TRXERR(NP),OBSERR(NP),

PKK(1, 1) ,PKK(3, 3),XT ,YT
C W.F-ITE(5,')TIE,XT,YT,XPOS,YPOS,ZX,ZY,LXKKM1(1,1) ,LXKKMl(3,1),
C ABS(M1l),GATE1(l),ABS(N12),GATE1(2),
C Gll',G13,G21,G23,TRKERR,OBSERR
1002 FORMAT(14,8FS. 1,8F8.5,2F8. 1)
100-3 F0R'XAT(14,2F8. 1)
1004 FO-RfATL( 2 i4, 10F8. 1)
1005 FORM.AT(1I-'-4F8. 1)

C UPDATE DATA COUNTER
NP NF+ 1

T IME M1 =T IME

ZXM1=ZX

zy~li=zxr

GOTO 810

800 NP=NP-1
C THIS IS WHERE THE 9MOO7HING ALGORITHM STARTS
C FIXED INTERVAL S"100THING

WRITE(-"',*)'SMO0THING FILTERED DATA WITH A'
WRI lTE(*,*)'FIXED INTERVAL SMOOTHING ALGORITHM'
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WRITE(~,)'*=**
C WRITE(*,*)'******* SMOOTHING STARTS HERE ****

WRITE( 3 ,*) '*** SMOOTHING STARTS HERE

DO 1000 KK=1,NP-1
K=NP -KK

DT-DTS( K+1)

TIME=TIMEM1 -DT
CALL FINDPHI(PHI,DT)

DO 901 I=1,4
XSS(I,1)=XKKS(I,1,K)

901 CONTINUE

DO 902 I=1,4
DO 902 J=1,4
PSS( I,J)=PKKS(I ,J,K)

902 CONTINUE

C CALCULATE THE PREDICTED STATE AND ERROR COVARIANCE MATRICES
C X(K+11K)=PHI*X(KIK)

CALL MATIMUL (PHI,XSS,4,4,1,XKKM1S)
C P(K+1 IK)=PHI*P(KIK)'*PHIT+Q

CALL MATRAN (PHI,PHIT,4,4)
CALL MATMUL(PHI,PSS,4,4,4,TEMP6)
CALL MATMUL(TEMP6,PHIT,4,4,4,TEMP4)
CALL GETQ(DT,XKKM1S,Q, 1)
CALL MATADD(TEMP4,Q,4,4,1,PKKMlS)

C CALCULATE THE SMOOTHING FILTER GAIN MATRIX
C AK=P(KjK)*PHIT-,'INV0 P(K+1IK)

CALL MATINV (PKKM1S,4,IPKKM1S)
CALL MATMUL (PKKM1S,IPKKM11S,4,4,4,II)
CALL MATIMUL (PSS,PHIT,4,4,4,TEMP1S)
CALL MATMUL (TEMP1S,IPKKM1S,4,4,4,AK)

DO 904 I=1,4
XNNM1(I,1)=XKKS(I,1,K+l)

904 CONTINUE

C CALCULATE THE SMOOTHED STATE ESTIMATE
C XKKS=X(KIK)+AK(X(K+1IN)-X(K+1IK)

CALL MATSUB (XNNM1,XKKM1S,4,1,TEMP2S)
CALL MATMUL (AK,TEMP2S,4,4,1,TEMP3S)
CALL MATADD (XSS,TEMP3S,4,1,K,XKKS)

DO 906 I=1,4
DO 906 J=1,4

PNNM1( I,J)=PKKS( I,J,K+l)
906 CONTINUE

C CALCULATE THE SMOOTHED COVARIANCE MATRIX
C PKKS=P(KIK)+AK:*[P(K+1IN)-P(K+11K)]*AKT
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CALL MATSUB (PNNM1,PKKM1S,4,4,TEMP4S)
CALL MATRAN (AK,AKT,4,4)
CALL MATMUL (AK,TEMP4S,4,4,4,TEMP5S)
CALL MATMUL (TEMP5S,AKT,4,4,4,TEMP6S)
CALL MATADD (PSS,TEMP6S,4,4,K,PKKS)

C C.OMPU TE ESTIMATED X-Y POSITION, COURSE, AND SPEED
SXPOS=XKKS( 1,1 ,K)
SYPOS=XKKS(3, 1,K)
IF (XKKS(2,1,K).EQ.O .AND. XKKS(4,1,K).EQ.O) THEN

SHDG=O. 0
ELSE

SHDG=-RTOD*ATAN2(XKKS(2,1,K) ,XKKS(4,1,K))
END IF
IF (SHDG.LT.O.O) SHDG=SHDG+360
SSPD(K)=60*SQRT(XKKS(2, 1,K)**2+XKKS(4,1 IK)**2)

C WRITE(*,*)'SM1OOTHED DATA FOR DATA POINT ,K
WRITE(3, *)'SMOOTHED DATA FOR DATA POINT',K

C WRITE(*,*)'TIME X POS Y POS HEADING SPEED'
WRITE(3,'*)'TIME X POS Y POS HEADING SPEED'

C WRITE(*,1010)TIME,SXPOS,SYPOS,SHDG,SSPD(K)
WRITE(3,1010)TIME,SXPOS,SYPOS,SHDG,SSPD(K)

C WRITE(*,1020)NP,K,XKKS( 1,1,K) ,XKKS(3,1,K) ,PKKS(1,1,K)
1010 FOR'!AT(I4,8F8. 1,8F8. 5,2F8. 1)
1020 FORMAT(214,3F8. 1)

TIMEml=TIME
1000 CONTINUE

REWIND 4

C CALCULATE THE SMOOTHED TRACKING ERROR
WRITE(9,*)'ERROR DATA FOR DATA POINT TRACKING ROUTINE'
WRITE(9,*)'K OBSERR TRKERR STRKERR FILSPD SMSPD'
DO 1100 K=1,NP

SXPOS=XKKS( 1,1 ,K)
SYPOS=XKKS(3, 1,K)
READ(4, 1110)TIME,XT,Y-T
STRKERR(K)=SQRT((XT-XKKS(1,1,K))**2+(YT-XKKS(3,1,K))**2)

C COMPUTE ERROR ELLIPSE DATA
CALL ELLIP(XKKS(1,1,K),XKKS(3,1,K),
* PKKS(1,1,K),PKKS(3,3,K),PKKS(1,3,K),XPS,YPS)
DO 1050 IE=1,21

WRITE( 8,*)XPS( IE) ,YPS( IE)
1050 CONTINUE

WRITE(6, 1120)K,SXPOS,SYPOS,STRKERR(K),
PKKS( 1, 1, K)PKKS(3 ,K)

WRITE(9, 1130)K,OBSERR(K) ,TRKERR(K) ,STRKERR(K) ,SPD(K) ,SSPD(K)
1100 CONTINUE
1110 FORMAT(I4,2F8. 1)
1120 FORMAT(I4,5F8. 1)
1130 FORMAT(I4,5F8. 1)

CLOSE(UNIT=2)
CLOSE(UNIT=3)
CLOSE( UNIT*=4)
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CLOSE (UNIT=5)
CLOSE( UNIT-6)
CLOSE( UNIT=7)
CLOSE(UNIT=8)
CLOSE( UNIT-9)
CLOSE(UNIT=-1O)

WRITE(*,*)'FILTERED & SMOOTHED OUTPUT DATA IS LOCATED IN THE'
WRITE(*,*)'DATA FILE OUTDATA.DAT. FOR GRAPHIC RESULTS COPY'
WRITE(*,*)' 1) ELLIP.DAT'
WRITE(*:*)' 2) ELLIPS.DAT'
WRITE(*,*)' 3) FILDATA.DAT'
WRITE(*,*): 4) SMDATA.DAT'
WRITE(*:*)' 5) TRUDATA.DAT'
WRITE(*,*)'TO THE MATLAB SUB-DIRECTORY AND RUN =>SHIP.M.'
WRITE(*,*) 'THERE WERE' ,NP,' OBSERVATIONS PROCESSED.'
STOP
END

C SUBROUTINES

SUBROUTINE FINDPHI(PHI ,DT)
C ~9*'--*...........
C COMPUTES THE VALUES OF THE PHI MATRIX

REAL 4 PHI(4,4),DT

DO 1501 I=1,4
DO 1501 J=1,4
DO 1501 K=1,2

PHil(I,J)=0. 0
1501 CONTINUE

C COM11PUTE PHI MATRIX
DO 150O I=1,4
PHI(I,I)I. 0

1500 CONTINUE
PHI( 1,2)=DT
PHI(3 ,4)=DT

RETURN

END

SUBROUTINE INIT(XS1,YS1,XS2,YS2,BRG1,BRG2,XKK,PKK)
C
C THIS ROUTINE INITIALIZES THE STATE
C AND ERROR COVARIANCE ESTIMATES
C **e*nh*************

REAL*c4 XKK(4,1) ,PKK(4,4)
REAL*4 XS1,YS1,XS2,YS2,BRG1,BRG2
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REAL'*4 NUMER ,DENOMt

C INITIAL STATE ESTIMATE

NUMER=( -YS2*TAN( BRG2) )+(YS1*TAN(BRG1) )+XS2-XS1
DENOM=TAN( BRG 1) -TAN( BRG2)

XKK( 3, 1)NUMER/DENOM
XKK(2,1)0O.0
XKK( 1, 1)=(XKK( 3,1) -YS1)*TAN(BRG1)+XS1
XKK(4,1)=0. 0

C INITIAL ERROR COVARIANCE ESTIMATE
PKK( 1, 1)10000
PKK(1,2)=O. 0
PKK(1,3)=O. 0
PKK(1,4)=0. 0
PKK(2,1)=O. 0
PKK(2,2)=0. 2500
PKK(2,3)O. 0
PKK(2,4)O. 0
PKK(3,1)O. 0
PKK(3,2)=O. 0
PKK(3 ,3)=10000
PKK(3,4)0O. 0
PKK(4,1)O. 0
PKK(4,2)O. 0
PKK(4,3)O. 0
PKK(4,4)=0. 2500

RETURN

END

SUBROUTINE GETQ(DT,XKKM1 ,Q,FLAG)

C ROUTINE TO GET Q MATRIX WHERE
C Q = GAMA(K)'*Q'(K)*GAMAT(K)

REAL'*4 DT,XKKM1(4,1),Q(4,4)
REAL*4 QPR(2,2),GAMA(4,2),GAMAT(2,4)
REAL*4 SI GVT2 ,SI GTH2 ,VT

INTEGER FLAG

IF ((XKKM1(2,1).EQ.0).OR.(XKKM1(4,1).EQ.0)) THEN
DO 100 I=1,4
DO 100 J=1,4

100 Q(I,J)0O.0
GOTO 200

END IF

C CALCULATE Q1MATRIX
SIGVT20. 0001
SIGTH2=0. 01096
VT=SQRT(XKK,,11(2, 1)**2+XKKM1(4, 1)**2)
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QPR(1,1)=(((XKKM1(2,1)/VT)**2)*SIGVT2)+C(XKKM1(4,1)**2)*SIGTH2)
QPR(2,2)=(((XKKMI(4,1)/VT)**2)*SIGVT2)+((XKKM1(2,1)**2)*SIGTH2)
QPR( 1,2)=((XKKN1(2,1))*(XKKM1(4,1))/(VT*c*2))*SIGVT2
* -(XKKM1(2,1))*(XKKiI(4,1))*SIGTHf2
QFR(2,1)=QPR( 1,2)
IF (FLAG. EQ. 0) THEN

QPR( 1, 1)=2. 50*QPR( 1,1)
QPR(2,2)=2. 50*QPR(2,2)

ENDIF

C CALCULATE GAMA MATRIX
GAMA( 1, 1)=(DT**2)/2. 0
GA.MA( 2, 1)=DT
GAMA(3,1)0. 0
GAMA(4,1)=0. 0
GAMA(1,2)=O. 0
GAA(2,2)0. 0
GAMA(3,2)=(DT**2)/2. 0
GAMA(4, 2)=DT

C Q=GAMA(K)*Q' (K)*GAMAT(K)
CALL MATRAN(GAMA ,GAMAT,4,2)
CALL MATMUL(GAMA,QPR,4,2,2,TEMP9)
CALL MATMUL(TEMP9,GAMAT,4 ,2 ,4,Q)
CALL MATSCL(0.01,Q,4,4,Q)

200 RETURN

END

SUBROUTI1NE REINIT(DT,ZX,ZY,ZXM1,ZYM1,LPKKM1,XKKM1,PKKM1)
C
C THIS ROUTINE RE-INITIALIZES THE STATE AND ERROR
C COVARIANCE ESTIMATES

REAL*4 DT,XKKMl(4,1),PKKM1(4,4)
REAL*'4 ZX,ZY,ZXM1,ZYM1,LPKKM1(4,4)

XDIFF=ZX-ZXM1
YDIFF=ZY-ZYM1
IF (DT.EQ.0) THEN

XKKM1( 1, 1)ZX
XKKM1(2, 1)=XDIFF
XKKM 1( 3, 1) ZY
XKK1(4, 1)=YDIFF

ELSE
XKKM1( 1, 1)ZX
XKKM'1(2, 1)=XDIFF/DT
XKKM1(3, 1)=:Y
XKKM1(4, 1)=YDIFF/DT

ENDIF

C WRITE(3,*)'REINITIALIZED STATES ARE;'
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DO 100 I=1,4
C WRITE(3,*)XKKM1(I,1)
100 CONTINUE

PKKM 1( 1 , 1) =LPKKM 1( 1, 1)
PKKM1(1,2)O. 0
PKKM41( 1,3)=LPKKM1(1,3)
PKKM1(1,4)=O. 0
PKKM1(2,1)=O. 0
PKKM1(2,2)=0. 1111
PK.KlM(2,3)=0. 0
PKKM1(2,4)=0. 0
PKKM1(3, 1)=LPKKM1(3, 1)
PKKM1(3,2)=0O 0
PKK.M1(3,3)=LPKKM1(3,3)
PKKM1(3,4)=0. 0
PKKM1(4,1)=0. 0
PKKM1(4,2)O. 0
PKK.M-1(4,3)=O. 0
PKKM1(4,4)=0. 1111

RETURN

END

SUBROUTINE MP(XS1,YS1,XS2,YS2,BRG1,BRG2,ZX,ZY)
C
C THIS ROUTINE COMPUTES THE ESTIMATED
G X,Y POSITION OBTAINED FROM MEASUREMENTS
C

REAT*14 ZX,ZY
REA1L*4 XSI,YS1,X52,YS2,BRG1,BRG2
REAL"4 NUMER ,DENOM

C INITIAL STATE ESTIMATE

NUMIER=(-YS2"*TAN(BRG2))+(YS1'*TAN(BRG1))+XS2-XS1
DEN0M=TAN( BR 1) -TAN( BRG2)

ZY=NUMER/DENOM
ZX=( ZY-YS 1 )TAN( BRG1)+XS1

RETURN

END

SUBROUTINE ELLIP(XT,YT,P1,P3,Pl3,XP,YP)
C ***~.

C THIS SUBROUTINE COMPUTES ERROR ELLIPSE DATA
C FROM ERROR COVARIANCE DATA
C
C DIMENSIONS AND DECLARATIONS

REAL*4 XT,YT,XP(21),YP(21),A,B,THE1,SIG2X,SIG2Y
REAL*4 SX,SY,PT,CT,ST,P1,P13,P3
INTEGER-,.' NP
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A=2*P1 3
B=P1-P3
THE 1=0. 5*ATAN2(A,B)
A=(P1+P3)/2
B=0. 0
IF (P13.EQ.0.0) GOTO 10
B=P13/SIN(2. 0*THE1)

10 SIG2X=ABS(A+B)
SIG2Y=ABS(A-B)
SX=SIG2X,'*. 5
SY=SIG2Y**0. 5
PT=3. 141592654/ 10
CT=-COS( THE 1)
ST=-SIN(THE1)

DO 100 IE=1,21
XP( IE)=SX*COS(PT*IE)*CT-SY*SIN(PT*IE)*ST+XT
YP( IE)=SX*COS( PTIIE)*ST+SY*SIN( PT*IE)*CT+YT

100 CONTINUE

RETURN

END

SUBROUTINE MATMUL(A,B,L,M,N,C)
C
C THIS ROUTINE MULTIPLIES TWO MATRICES TOGETHER
C C(L,N) = A(L,M) * B(M,N)

C DIMENSIONS AND DECLARATIONS
REAL*4 A(L,M),B(M,N),C(L,N)

DO 10 I=1,L
DO 10 J=1,N
C(I,J)0. 0

10 CONTINUE

DO 100 I= 1,L
DO 100 J= 1,N
DO 100 K= 1,M
C(I,J) = C(I,J) + A(I,K)*B(K,J)

100 CONTINUE

RETURN

END

SUBROUTINE MATRAN(A,B,N,M)
C
C THIS ROUTINE TRANSPOSES A M1ATRIX
C 0B(M,N) =A t (N,M)
C
C DIMENSIONS AND DECLARATIONS
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REAL*4 A(N,M), B(M,N)

DO 100 I= 1,N
DO 100 J= 1,M
B(J,I) = A(I,J)

100 CONTINUE

RETURN

END

SUBROUTINE MATSCL(Q,A,N,M,C)
C
C THIS ROUTINE MULTIPLIES A MATRIX WITH A SCALAR
o C(N,M) = Q * A(N,M)
C ***********~***************

C DIMENSIONS AND DECLARATIONS
REAL*4 A(N,M), C(N,M), Q

DO 100 I = 1,N
DO 100 J = 1,M
C(I,J) = Q*A(I,J)

100 CONTINUE

RETURN

END

SUBROUTINE MATSUB(A,B,N,M,C)
0 ~~C ''''"*-- *'***-

C THIS ROUTINE SUBTRACTS TWO MATRICES
C C(N,M) = A(N,M) - B(N,M)
C ' ~ -

C DIMENSIONS AND DECLARATIONS
REAL'*4 A(N,M),B(N,M),C(N,M)

DO 100 I = 1,N
DO 100 J = 1,M
C(I,J)=A(I,J)-B(I,J)

100 CONTINUE

RETURN

END

SUBROUTINE MATADD(A,B,N,M,L,C)

C THIS ROUTINE ADDS TWO MATRICES
C C(N,M) = A(N,M) + B(N,Ii)

C DIMENSIONS AND DECLARATIONS
REAL:,'4 A(N,M),B(N,M),C(N,M,L)
DO 100 I = 1,N
DO 100 J = 1,M

81



C(I,J,L)=A(I,J)+B(I,J)
100 CONTINUE

RETURN
END

SUBROUTINE MATINV (A,N,C)

C THIS ROUTINE COMPUTES THE INVERSE OF
C A MATRIX
C C(N,N)=INV [A(N,N)]

C DIMENSIONS AND DECLARATIONS
REAL*4 A(N,N),C(N,N),D(20,20)
DO 100 I1 1,N
DO 100 J =1,N

100 D(I,J)=A(I,J)

DO 115 I=1,N
DO 115 J=N+1,2*N

115 D(I,J)=0.0

DO 120 I-1,N
J=I+N

120 D(I,J)=1.0

DO 240 K1I,N
MIIK4 1
IF (K.EQ.N) GOTO 180
L=K
DO 140 I=M,N

140 IF (ABS(D(I,K)).GT.ABS(D(L,K))) L=I
IF (L.EQ.K) GOTO 180

DO 160 J=K,2*N
TEM1P=D(K ,J)
D (K, J)=D (L ,J)

160 D(L,J)=TEMP

180 DO 183 J=M,2*N
183 D(K,J)=D(K,J)/D(K,K)

IF (K.EQ.1) GOTO 220
M1=K-1
DO 200 I=1,M1
DO 200 J=M,2*N

200 D(I,J)=D(I,J)-D(I,K)*D(K,J)

IF (K.EQ.N) GOTO 260

220 DO 240 I=M,N
DO 240 J=M,2*N

240 D(I,J)=D(I,J)-D(I,K)*D(K,J)

260 DO 265 I=1,N
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DO 265 J=1,N
K=J+N

265 C(I,J)=D(I,K)

RETURN
END
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APPENDIX B. TRACK.FOR

This is the TRACK.FOR program used to generate the TRKDATA.DAT file to be

read by SHIPSM.FOR. This program was written by LT Tom Bennett.

REAL*4 XT(4,1),XS1(4,1),P{I(4,4),SPDS1,HDGS1,SPDS2,HDGS2
REAL*4 DT,SPDT,HDGT,XS2(4,1),TEMP1(4,1),CASE,XDIFF1,YDIFF1
REAL*4 XDIFF2,YDIFF2,N1,N2,DTOR,RTOD,BRG1,BRG2
INTEGER TIME,TIMEM1

OPEN(UNIT=2,FILE='NOISEI. DAT' ,STATUS='OLD')
OPEN(UNIT=3,FILE='NOISE2. DAT' 1STATUS='OLD')
OPEN(UNIT=4,FILE='TRKDATA. DAT ,STATUS='NEW')

WRITE(*,*)'ENTrER A NEGATIVE NUMBER FOR NOISELESS CASE;'
WRITE(*,*)'POSITIVE FOR NOISY CASE'
READ (*,*)CASE

TIMEM1O0
RTOD=57. 29577951
DTOR=O. 017453293

WRITE(*,*)'INPUTT DESIRED INITIAL X POSITION OF TARGET'
READ(*,*)XT( 1,1)
WRITE(*,*)'INPUT DESIRED INITIAL Y POSITION OF TARGET'
READ(*,*)XT(3, 1)
WRITE(*,*)'INPUT DESIRED TARGET SPEED IN KNOTS'
READ(*,*)SPDT
WRITE(*,*)'INPUT DESIRED TARGET COURSE IN DEGREES'
READ(* ,*)IDGT

XT(2, 1)=(SPDT/60)*SIN(HDGT*DTOR)
XT.(4, 1)=(SPDT/60)*COS(HDGT*l DTOR)

WRITE(*,*)'FOR SENSOR 1:'
WRITE('*,*)'INPUT DESIRED INITIAL X POSITION'
READ(,: ,)XS1(1 1)
WRITE(*,"*)'INPUT DESIRED INITIAL Y POSITION'
READ(*,*)XS1(3, 1)
WRITE(*,*)'INPUT DESIRED SPEED IN KNOTS'
READ(*,*)SPDS1
WRITE(*,*)'INPUT DESIRED COURSE IN DEGREES'
READ(*,*)HDGS1

XS1(2, 1)=(SPDS1/60)*SIN(}IDGS1*DTOR)
XS1(4, 1)=(SPDS1/60)*COS(HDGS1*DTOR)

WRITE(*,*)'FOR SENSOR 2:'
WRITE(*,'e)'INPUT DESIRED INITIAL X POSITION'
READ(* ,XS2 ( 1, 1)
WRITE(*e,*)'INPUT DESIRED INITIAL Y POSITION'
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READ(*,*~)XS2(3, 1)
WRITE('*,')'INPUT DESIRED SPEED IN KNOTS'
READY( ,*)SPDS2
WRITE(*,*)'INPUT DESIRED COURSE IN DEGREES'
READ(* ,*)J{DGS2

XS2(2, 1)=(SPDS2/60)*SIN(HDGS2*DTOR)
XS2(4, 1)=(SPDS2/60)*COS(HDGS2*DTOR)

DO 310 J=1,1000
300 WRITE(*',*)'INPUT TIME OF UPDATE (NEG. FOR END OF PROBLEM)'

WRITE(*,*)'ENTER "9999" FOR SPEED AND COURSE UPDATE'
READ(* ,")TIME
IF (TIME. LT. 0) GOTO 900
IF (TIME. EQ. 9999) THEN

WRITE (*,*)'INPUT NEW DESIRED TARGET SPEED IN KNOTS'
READ (*,*)SPDT
WRITE (*,*)'INPUT NEW DESIRED TARGET COURSE IN DEGREES'
READ (*,*)HDGT

XT( 2, 1)=r SPDT/60)*SIN(HDGT-,'DTOR)
XT(4, 1)=(SPDT/60)*COS(HDGT-,'DTOR)

GOTO 300
END IF

C UPDATE TARGET AND SENSOR STATES TO MEASUREMENT TIME
DT=TIME-TIN11EM1

C COMPUTE PHI MATRIX
PHI( 1, 1)=1. 0
PHI( 1,2)=DT
PlH;I ( 1, 3) =0. 0
PHI(1,4)=0. 0
PHI(2,1)0. 0
Pi-i(2,2)=1. 0
PHI('2.3)O. 0
PHI(2,4)=0. 0
PH-I(3,1)=0. 0
PHI(3,2)=0. 0
PHI(3,3)=1. 0
PHI( 3,4)=DT
PHI(4,1)O. 0
PH-I(4,2)O. 0
PHI(4,3)O. 0
PHI(4,4)=1. 0

C UPDATE TARGET STATES
CALL MATMUL(PHI,XT,4,4,1,TEMP1)
DO 700 I=1,4

XT(I,1)=TEMP1(I,1)
700 CONTINUE

C UPDATE SENSOR STATES



CALL MATMUL(PHI,XS1,4,4,1,TEMP1)
DO 710 I=1,4

XS1(I ,1)=TEMP1(I, 1)
710 CONTINUE

CALL MATMUL(PHI,XS2,4,4,1,TEMPl)
DO 720 I=1,4

XS2(I,1)=TEMPI(I,l)
720 CONTINUE

XDIFF1=XT(1,1)-XS1(1,1)
YDIFF1=XT(3, 1)-XS1(3, 1)

XDIFF2=XT(1, 1)-XS2(1, 1)
YDIFF2=XT(3, 1)-XS2(3, 1)

READ(2,*)N1
READ( 3,*)N2

IF (CASE. GE. 0.0) GOTO 450
N1=0. 0
N2=0. 0

450 BRG1=RTOD*ATAN2(XDIFF1 ,YDIFF1)±N1
IF (BRG1.LT.0.0) BRG1=BRG1+360

BRG2=RTOD"*ATAN2(XDIFF2 ,YDIFF2)+N2
IF (BRG2.LT.0) BRG2=BRG2+360

WRITE(4,500)TIME,XT(1,1),XT(3,1),XS1(1,1),XSl(3,1),
BRG 1, XS2(1, 1),XS2(3, 1),BRG2

500 FORYIAT(I4,8F9.4)

TIMEM1=TIME

310 CONTINUE
900 STOP

END

SUBROUTINE MATMUL(A,B,L,M,N,C)
C
C THIS ROUTINE MULTIPLIES TWO MATRICES TOGETHER
C 0C(L,N) = A(L,M) * B(M,N)
C
C DIMIE:SIONS AND DECLARATIONS

REAL-4 A(L,M),B(M,N),C(L,N)

DO 10 1=1,L
DO 10 J1I,N
C(I,J)=0. 0

10 CONTINUE

DO 100 I= 1,L
DO 100 J= 1,N
DO 100 K= 1,M

86



C(IJ) *C(IJ) + A(I*K)*$(KJ)
100 CONTINUE

RETURN

END
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